Conditional Expectation Function

Law of Iterated Expectations

Theorem

EX[EY(YX)]=E[Y]

Proof
离散型随机变量

EX[EY(YX)]=xEY(YX=x)P(X=x)=xyyP(Y=yX=x)P(X=x)=xyyP(X=xY=y)P(Y=y)=xP(X=xY=y)yyP(Y=y)=yyP(Y=y)=E[Y]

连续型随机变量

EX[EY(YX)]=xEY(YX)pX(x) dx=xyypYX(x,y)dy pX(x) dx=xyypXY(x,y)pY(y) dy dx=xpXY(x,y) dxyypY(y)dy=yypY(y)dy=E[Y]

Best Predictor

Theorem
Let g(X) be any function of X, then

E[Y|X]=argmingE[(Yg(X))2]

Proof

E[(Yg(X))2]=E[(YE[Y|X]+E[Y|X]g(X))2]=E[(YE[Y|X])2]+E[(E[Y|X]g(X))2]++2E[(YE[Y|X])(E[Y|X]g(X))]

the first term

E[(YE[Y|X])2]=E{(YE[Y|X])2|X}=E{Var[Y|X]}0

the last term

2E[(YE[Y|X])(E[Y|X]g(X))]=2E[E{(YE[Y|X])(E[Y|X]g(X))|X}]=2E[(E[Y|X]g(X))E{YE[Y|X]|X}]=2E[(E[Y|X]g(X)){E[Y|X]E[Y|X]}]=0

therefore, take

g(X)=E[Y|X]